Genes for glycosylphosphatidylinositol toxin biosynthesis in Plasmodium falciparum.
نویسندگان
چکیده
About 2.5 million people die of Plasmodium falciparum malaria every year. Fatalities are associated with systemic and organ-specific inflammation initiated by a parasite toxin. Recent studies show that glycosylphosphatidylinositol (GPI) functions as the dominant parasite toxin in the context of infection. GPIs also serve as membrane anchors for several of the most important surface antigens of parasite invasive stages. GPI anchoring is a complex posttranslational modification produced through the coordinated action of a multicomponent biosynthetic pathway. Here we present eight new genes of P. falciparum selected for encoding homologs of proteins essential for GPI synthesis: PIG-A, PIG-B, PIG-M, PIG-O, GPI1, GPI8, GAA-1, and DPM1. We describe the experimentally verified mRNA and predicted amino acid sequences and in situ localization of the gene products to the parasite endoplasmic reticulum. Moreover, we show preliminary evidence for the PIG-L and PIG-C genes. The biosynthetic pathway of the malaria parasite GPI offers potential targets for drug development and may be useful for studying parasite cell biology and the molecular basis for the pathophysiology of parasitic diseases.
منابع مشابه
Interaction between Plasmodium Glycosylphosphatidylinositol and the Host Protein Moesin Has No Implication in Malaria Pathology
Glycosylphosphatidylinositol (GPI) anchor of Plasmodium falciparum origin is considered an important toxin leading to severe malaria pathology through stimulation of pro-inflammatory responses from innate immune cells. Even though the GPI-induced immune response is widely described to be mediated by pattern recognition receptors such as TLR2 and TLR4, previous studies have revealed that these t...
متن کاملFatty acids from Plasmodium falciparum down-regulate the toxic activity of malaria glycosylphosphatidylinositols.
Plasmodium falciparum malaria kills roughly 2.5 million people, mainly children, annually. Much of this mortality is thought to arise from the actions of a malarial toxin. This toxin, identified as glycosylphosphatidylinositol (GPI), is a major pathogenicity determinant in malaria. A malarial molecule, Pfj, labeled by [3H]glucosamine like the GPIs, was identified as a non-GPI molecule. Here we ...
متن کاملGenotyping of C and F Regions of Plasmodium Falciparum EBA-175 in South-East of Iran
Abstract Background and Objective: The Plasmodium falciparum EBA-175, via Sialic acid dependent glycophorin A, binds to red blood cells and thus plays a critical role in cell invasion. Some part of second allele in its gene encoding in FCR-3 (Section F) and CAMP (Section C) can be found. This study aimed to determine the prevalence of Plasmodium falciparum EBA-175KD alleles in southeastern I...
متن کاملNeutralization of malaria glycosylphosphatidylinositol in vitro by serum IgG from malaria-exposed individuals.
Parasite-derived glycosylphosphatidylinositol (GPI) is believed to be a major inducer of the pathways leading to pathology and morbidity during Plasmodium falciparum infection and has been termed a malaria "toxin." The generation of neutralizing anti-GPI ("antitoxic") antibodies has therefore been hypothesized to be an important step in the acquisition of antidisease immunity to malaria; howeve...
متن کاملSignal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites
In this study, we have identified a dominant glycolipid toxin of Plasmodium falciparum. It is a glycosylphosphatidylinositol (GPI). The parasite GPI moiety, free or associated with protein, induces tumor necrosis factor and interleukin 1 production by macrophages and regulates glucose metabolism in adipocytes. Deacylation with specific phospholipases abolishes cytokine induction, as do inhibito...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 70 8 شماره
صفحات -
تاریخ انتشار 2002